1,270 research outputs found

    Optical properties of potential-inserted quantum wells in the near infrared and Terahertz ranges

    Full text link
    We propose an engineering of the optical properties of GaAs/AlGaAs quantum wells using AlAs and InAs monolayer insertions. A quantitative study of the effects of the monolayer position and the well thickness on the interband and intersubband transitions, based on the extended-basis sp3d5s* tight-binding model, is presented. The effect of insertion on the interband transitions is compared with existing experimental data. As for intersubband transitions, we show that in a GaAs/AlGaAs quantum well including two AlAs and one InAs insertions, a three level {e1 , e2 , e3 } system where the transition energy e3-e2 is lower and the transition energy e2-e1 larger than the longitudinal optical phonon energy (36 meV) can be engineered together with a e3-e2 transition energy widely tunable through the TeraHertz range

    Zeitgeist Archaeology : Conflict, Identity, and Ideology at Prague Castle, 1918-2018

    Get PDF
    The discovery of a tenth-century AD high-status burial at Prague Castle in 1928 led to multiple identifications in the context of two world wars and the Cold War. Recognised variously as both a Viking and Slavonic warrior according to Nazi and Soviet ideologies, interpretation of the interred individual and associated material culture were also entangled with the story of the burial's excavator, the remains and commemorative monuments of two Czech Unknown Soldiers and the creation of the Czechoslovak state. This epic narrative reflects the circumstances of Czechoslovakia and Central Europe across the twentieth century.Peer reviewe

    Bipolar Magnetic Semiconductors: A New Class of Spintronics Materials

    Full text link
    Electrical control of spin polarization is very desirable in spintronics, since electric field can be easily applied locally in contrast with magnetic field. Here, we propose a new concept of bipolar magnetic semiconductor (BMS) in which completely spin-polarized currents with reversible spin polarization can be created and controlled simply by applying a gate voltage. This is a result of the unique electronic structure of BMS, where the valence and conduction bands possess opposite spin polarization when approaching the Fermi level. Our band structure and spin-polarized electronic transport calculations on semi-hydrogenated single-walled carbon nanotubes confirm the existence of BMS materials and demonstrate the electrical control of spin-polarization in them.Comment: 20 pages, 6 figures, accepted by Nanoscal

    Magnetic Boron Nitride Nanoribbons with Tunable Electronic Properties

    Full text link
    We present theoretical evidence, based on total-energy first-principles calculations, of the existence of spin-polarized states well localized at and extended along the edges of bare zigzag boron nitride nanoribbons. Our calculations predict that all the magnetic configurations studied in this work are thermally accessible at room temperature and present an energy gap. In particular, we show that the high spin state, with a magnetic moment of 1 μB\mu_B at each edge atom, presents a rich spectrum of electronic behaviors as it can be controlled by applying an external electric field in order to obtain metallic \leftrightarrow semiconducting \leftrightarrow half-metallic transitions.Comment: 12 pages, 5 figures, 2 table

    Bandgap Change of Carbon Nanotubes: Effect of Small Tensile and Torsional Strain

    Full text link
    We use a simple picture based on the π\pi electron approximation to study the bandgap variation of carbon nanotubes with uniaxial and torsional strain. We find (i) that the magnitude of slope of bandgap versus strain has an almost universal behaviour that depends on the chiral angle, (ii) that the sign of slope depends on the value of (nm)mod3(n-m) \bmod 3 and (iii) a novel change in sign of the slope of bandgap versus uniaxial strain arising from a change in the value of the quantum number corresponding to the minimum bandgap. Four orbital calculations are also presented to show that the π\pi orbital results are valid.Comment: Revised. Method explained in detai

    Radiotherapy in langerhans cell histiocytosis - a rare indication in a rare disease

    Full text link
    Introduction: Langerhans Cell Histiocytosis (LCH) represents a rare benign disorder, previously designated as “Histiocytosis X”, “Type II Histiocytosis” or “Langerhans Cell Granulomatosis”. Clinical presentation includes osteolysis, ulcerations of skin and soft tissues but also involvement of the CNS is described. Because treatment concepts are not well defined the German Cooperative Group on Radiotherapy for Benign Diseases performed a retrospective analysis. Methods and material: Eight closely cooperating centres collected patients’ data of the past 45 years. As study endpoints disease free survival, recurrent disease, death and therapy related side effects were defined. Results: A total of 80 patients with histologically proven LCH were irradiated within the past 45 years. According to the LCH classification of Greenberger et al. 37 patients had stage Ia, 21 patients stage Ib, 13 patients stage II and 9 patients stage IIIb and the median age was 29 years. The median Follow up was 54 months (range 9–134 months). A total of 39 patients had a surgical intervention and 23 patients a chemotherapy regimen. Radiation treatment was carried out with a median total dose of 15 Gy (range 3–50.4 Gy). The median single fraction was 2 Gy (range 1.8-3 Gy). Overall, 77% patients achieved a complete remission and 12.5% achieved a partial remission. The long-term control rate reached 80%. Within an actuarial overall 5-year survival of 90% no radiogenic side and late effects ≥EORTC/RTOG II° were observed. Conclusion: In the present study a large collective of irradiated patients was analysed. Radiotherapy (RT) is a very effective and safe treatment option and even low RT doses show sufficient local control.<br

    "Narrow" Graphene Nanoribbons Made Easier by Partial Hydrogenation

    Full text link
    It is a challenge to synthesize graphene nanoribbons (GNRs) with narrow widths and smooth edges in large scale. Our first principles study on the hydrogenation of GNRs shows that the hydrogenation starts from the edges of GNRs and proceeds gradually toward the middle of the GNRs so as to maximize the number of carbon-carbon π\pi-π\pi bonds. Furthermore, the partially hydrogenated wide GNRs have similar electronic and magnetic properties as those of narrow GNRs. Therefore, it is not necessary to directly produce narrow GNRs for realistic applications because partial hydrogenation could make wide GNRs "narrower"

    Screening of suitable cationic dopants for solar absorber material CZTS/Se: A first principles study

    Get PDF
    The earth abundant and non-toxic solar absorber material kesterite Cu2ZnSn(S/Se)(4) has been studied to achieve high power conversion efficiency beyond various limitations, such as secondary phases, antisite defects, band gap adjustment and microstructure. To alleviate these hurdles, we employed screening based approach to find suitable cationic dopant that can promote the current density and the theoretical maximum upper limit of the energy conversion efficiency (P(%)) of CZTS/Se solar devices. For this task, the hybrid functional (Heyd, Scuseria and Ernzerhof, HSE06) were used to study the electronic and optical properties of cation (Al, Sb, Ga, Ba) doped CZTS/Se. Our in-depth investigation reveals that the Sb atom is suitable dopant of CZTS/CZTSe and also it has comparable bulk modulus as of pure material. The optical absorption coefficient of Sb doped CZTS/Se is considerably larger than the pure materials because of easy formation of visible range exciton due to the presence of defect state below the Fermi level, which leads to an increase in the current density and P(%). Our results demonstrate that the lower formation energy, preferable energy gap and excellent optical absorption of the Sb doped CZTS/Se make it potential component for relatively high efficient solar cells
    corecore